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Chapitre 3: État de contrainte bidimentionnel
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Etat de contrainte au point M0

• p 𝑀𝑀0 =
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Quand l’une des trois contraintes principales est nulle, l’état de contrainte est dit
bidimensionnel, tel qu’il apparaît par exemple dans des enceintes sous pression ou
dans des membranes de capteurs.

Dans ce qui suit, nous ne nous écarterons pas de la loi de proportionnalité et du
principe de superposition. Chaque contrainte entraîne les mêmes déformations que si
elle était appliquée seule et la déformation résultante est la somme des déformations
partielles.

Notions générales : Principe de superposition

σy

σx

σy

σx

dz
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y et Y

x et X

z et Z

M0

• σ1 = σx

• σ2 = σy < σx

• σ3 = σz = 0 < σy
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Notions générales : Principe de superposition

σy

σx

σy

σx

M0

Allongement 
selon M0x

𝜀𝜀𝑥𝑥𝑥𝑥 =
𝜎𝜎𝑥𝑥
𝐸𝐸

𝜀𝜀𝑥𝑥𝑥𝑥 = −𝜇𝜇
𝜎𝜎𝑦𝑦
𝐸𝐸

𝜀𝜀𝑥𝑥 =
1
𝐸𝐸

𝜎𝜎𝑥𝑥 − 𝜇𝜇𝜎𝜎𝑦𝑦

Allongement 
selon M0y

𝜀𝜀𝑦𝑦𝑦𝑦 = −𝜇𝜇
𝜎𝜎𝑥𝑥
𝐸𝐸

𝜀𝜀𝑦𝑦𝑦𝑦 =
𝜎𝜎𝑦𝑦
𝐸𝐸

𝜀𝜀𝑦𝑦 =
1
𝐸𝐸

𝜎𝜎𝑦𝑦 − 𝜇𝜇𝜎𝜎𝑥𝑥

Allongement 
selon M0z

𝜀𝜀𝑧𝑧𝑧𝑧 = −𝜇𝜇
𝜎𝜎𝑥𝑥
𝐸𝐸

𝜀𝜀𝑧𝑧𝑧𝑧 = −𝜇𝜇
𝜎𝜎𝑦𝑦
𝐸𝐸

𝜀𝜀𝑧𝑧 =
−𝜇𝜇
𝐸𝐸

𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦

Effet de σx

Effet de σy

Somme
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Ces résultats peuvent aisément être généralisés à un état de contrainte
tridimensionnel (σx σy σz ) avec les allongements relatifs :

• 𝜀𝜀𝑥𝑥 = 𝜎𝜎𝑥𝑥
𝐸𝐸
− 𝜇𝜇 𝜎𝜎𝑦𝑦

𝐸𝐸
− 𝜇𝜇 𝜎𝜎𝑧𝑧

𝐸𝐸

• 𝜀𝜀𝑦𝑦 = 𝜎𝜎𝑦𝑦
𝐸𝐸
− 𝜇𝜇 𝜎𝜎𝑧𝑧

𝐸𝐸
− 𝜇𝜇 𝜎𝜎𝑥𝑥

𝐸𝐸

• 𝜀𝜀𝑧𝑧 = 𝜎𝜎𝑧𝑧
𝐸𝐸
− 𝜇𝜇 𝜎𝜎𝑥𝑥

𝐸𝐸
− 𝜇𝜇 𝜎𝜎𝑦𝑦

𝐸𝐸

Principe de superposition

Allongement selon M0x Allongement selon M0y Allongement selon M0z

Effet de σx 𝜀𝜀𝑥𝑥𝑥𝑥 =
𝜎𝜎𝑥𝑥
𝐸𝐸

𝜀𝜀𝑦𝑦𝑦𝑦 = −𝜇𝜇
𝜎𝜎𝑥𝑥
𝐸𝐸

𝜀𝜀𝑧𝑧𝑧𝑧 = −𝜇𝜇
𝜎𝜎𝑥𝑥
𝐸𝐸

Effet de σy 𝜀𝜀𝑥𝑥𝑥𝑥 = −𝜇𝜇
𝜎𝜎𝑦𝑦
𝐸𝐸

𝜀𝜀𝑦𝑦𝑦𝑦 =
𝜎𝜎𝑦𝑦
𝐸𝐸

𝜀𝜀𝑧𝑧𝑧𝑧 = −𝜇𝜇
𝜎𝜎𝑦𝑦
𝐸𝐸

Effet de σy 𝜀𝜀𝑥𝑥𝑥𝑥 = −𝜇𝜇
𝜎𝜎𝑧𝑧
𝐸𝐸

𝜀𝜀𝑦𝑦𝑦𝑦 = −𝜇𝜇
𝜎𝜎𝑧𝑧
𝐸𝐸

𝜀𝜀𝑧𝑧𝑧𝑧 =
𝜎𝜎𝑧𝑧
𝐸𝐸

Somme 𝜀𝜀𝑥𝑥 =
1
𝐸𝐸

𝜎𝜎𝑥𝑥 − 𝜇𝜇𝜎𝜎𝑦𝑦 − 𝜇𝜇𝜎𝜎𝑧𝑧 𝜀𝜀𝑦𝑦 =
1
𝐸𝐸

𝜎𝜎𝑦𝑦 − 𝜇𝜇𝜎𝜎𝑥𝑥 − 𝜇𝜇𝜎𝜎𝑧𝑧 𝜀𝜀𝑧𝑧 =
1
𝐸𝐸

𝜎𝜎𝑧𝑧 − 𝜇𝜇𝜎𝜎𝑥𝑥 − 𝜇𝜇𝜎𝜎𝑦𝑦
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Ces résultats peuvent aisément être généralisés à un état de contrainte
tridimensionnel (σx σy σz ) avec les allongements relatifs :

• 𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑥𝑥
𝐸𝐸
− 𝜇𝜇 𝜎𝜎𝑦𝑦

𝐸𝐸
− 𝜇𝜇 𝜎𝜎𝑧𝑧

𝐸𝐸

• 𝜀𝜀𝑦𝑦𝑦𝑦 = 𝜎𝜎𝑦𝑦
𝐸𝐸
− 𝜇𝜇 𝜎𝜎𝑧𝑧

𝐸𝐸
− 𝜇𝜇 𝜎𝜎𝑥𝑥

𝐸𝐸

• 𝜀𝜀𝑧𝑧𝑧𝑧 = 𝜎𝜎𝑧𝑧
𝐸𝐸
− 𝜇𝜇 𝜎𝜎𝑥𝑥

𝐸𝐸
− 𝜇𝜇 𝜎𝜎𝑦𝑦

𝐸𝐸

Principe de superposition

𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝑦𝑦𝑦𝑦
𝜀𝜀𝑧𝑧𝑧𝑧
𝛾𝛾𝑥𝑥𝑥𝑥
𝛾𝛾𝑦𝑦𝑦𝑦
𝛾𝛾𝑧𝑧𝑧𝑧

=

1
𝐸𝐸

−
𝜇𝜇
𝐸𝐸

−
𝜇𝜇
𝐸𝐸

0 0 0
1
𝐸𝐸

−
𝜇𝜇
𝐸𝐸

0 0 0

1
𝐸𝐸

0 0 0
1
𝐺𝐺

0 0

(𝑠𝑠𝑠𝑠𝑠𝑠)
1
𝐺𝐺

0

1
𝐺𝐺

𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑦𝑦𝑦𝑦
𝜎𝜎𝑧𝑧𝑧𝑧
𝜏𝜏𝑥𝑥𝑥𝑥
𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑧𝑧𝑧𝑧

matrice de compliance
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L’état de contrainte à un point n’est pas un scalaire ou un vecteur. C’est un objet
mathématique plus compliqué et appelé tenseur (une norme et 2 directions)

Matrice de rigidité (voir chapitre 13)

•

𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑦𝑦𝑦𝑦
𝜎𝜎𝑧𝑧𝑧𝑧
𝜏𝜏𝑥𝑥𝑥𝑥
𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑧𝑧𝑧𝑧

= 𝐸𝐸
1+𝜇𝜇 1−2𝜇𝜇

1 − 𝜇𝜇 𝜇𝜇 𝜇𝜇 0 0 0
1 − 𝜇𝜇 𝜇𝜇 0 0 0

1 − 𝜇𝜇 0 0 0
1−2𝜇𝜇
2

0 0

(𝑠𝑠𝑠𝑠𝑠𝑠) 1−2𝜇𝜇
2

0
1−2𝜇𝜇
2

𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝑦𝑦𝑦𝑦
𝜀𝜀𝑧𝑧𝑧𝑧
𝛾𝛾𝑥𝑥𝑥𝑥
𝛾𝛾𝑦𝑦𝑦𝑦
𝛾𝛾𝑧𝑧𝑧𝑧

Forme matricielle  (mécanique des solides)
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Introduction

𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑥𝑥
𝐸𝐸

𝜀𝜀𝑦𝑦𝑦𝑦 = 𝜀𝜀𝑧𝑧𝑧𝑧 = −𝜇𝜇
𝜎𝜎𝑥𝑥
𝐸𝐸

𝜎𝜎𝑧𝑧 = 𝜎𝜎𝑦𝑦 = 0
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Introduction

σϕ τϕ
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Analyse de l’état de contrainte bidimensionnelle

Les conditions de symétrie permettent souvent de connaître a priori les trois axes
principaux en un point M0 du solide, qui sont alors choisis comme axes de référence.

Calculons les contraintes normale σϕ et tangentielle τϕ dans une section oblique Fϕ
tournant autour de l’axe M0z (σz = 0) et dont la normale n fait un angle ϕ avec l’axe
principal M0x

• 𝐹𝐹𝜑𝜑 𝜎𝜎𝜑𝜑− 𝐹𝐹𝑥𝑥 𝜎𝜎𝑥𝑥 cos𝜑𝜑 − 𝐹𝐹𝑦𝑦 𝜎𝜎𝑦𝑦 sin𝜑𝜑 = 0

• 𝐹𝐹𝜑𝜑 𝜏𝜏𝜑𝜑+ 𝐹𝐹𝑥𝑥 𝜎𝜎𝑥𝑥 sin𝜑𝜑 − 𝐹𝐹𝑦𝑦 𝜎𝜎𝑦𝑦 cos𝜑𝜑 = 0

𝐹𝐹𝜑𝜑 = 𝐹𝐹0/ cos𝜑𝜑
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État de contrainte bidimensionnelle pour axes de référence coïncidant avec les axes principaux

En vertu de la définition des faces Fx = Fϕ cos ϕ et Fy = Fϕ sin ϕ, les relations
précédentes deviennent, après simplification par Fϕ

• 𝜎𝜎𝜑𝜑 = 𝜎𝜎𝑥𝑥 cos2𝜑𝜑 + 𝜎𝜎𝑦𝑦 sin2𝜑𝜑 = 𝜎𝜎𝑥𝑥+ 𝜎𝜎𝑦𝑦
2

+ 𝜎𝜎𝑥𝑥− 𝜎𝜎𝑦𝑦
2

cos 2𝜑𝜑

• 𝜏𝜏𝜑𝜑 = − 𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦 cos𝜑𝜑 sin𝜑𝜑 = − 𝜎𝜎𝑥𝑥− 𝜎𝜎𝑦𝑦
2

sin 2𝜑𝜑

On retrouve les équations paramétriques d’un cercle compris entre les contraintes
principales σ1 = σx et σ2 = σy agissant sur les plans principaux entre lesquels la
section tourne. Les contraintes de cisaillement τmax et τmin apparaissent à nouveau
sur des sections dont les normales font respectivement les angles –π/4 et +π/4 avec
l’axe principal M0 x.

Il s’agit du cercle de Mohr Γxy pour une section oblique tournant autour de M0 z

cos2 𝜑𝜑 =
1 + cos 2𝜑𝜑

2
sin2 𝜑𝜑 =

1 − cos 2𝜑𝜑
2

cos𝜑𝜑 sin𝜑𝜑= sin 2𝜑𝜑
2
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État de contrainte bidimensionnelle pour axes de référence coïncidant avec les axes principaux

Cercle de Mohr Γxy pour une section oblique tournant autour de M0 z

• 𝜎𝜎𝜑𝜑 = 𝜎𝜎𝑥𝑥 cos2𝜑𝜑 + 𝜎𝜎𝑦𝑦 sin2𝜑𝜑 = 𝜎𝜎𝑥𝑥+ 𝜎𝜎𝑦𝑦
2

+ 𝜎𝜎𝑥𝑥− 𝜎𝜎𝑦𝑦
2

cos 2𝜑𝜑

• 𝜏𝜏𝜑𝜑 = − 𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦 cos𝜑𝜑 sin𝜑𝜑 = − 𝜎𝜎𝑥𝑥− 𝜎𝜎𝑦𝑦
2

sin 2𝜑𝜑

σ =
𝜎𝜎𝑥𝑥 0 0
0 𝜎𝜎𝑦𝑦 0
0 0 0

σ =
𝜎𝜎𝑦𝑦 0 0
0 𝜎𝜎𝑥𝑥 0
0 0 0

σ =

𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦
2

𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦
2

0
𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦

2
𝜎𝜎𝑥𝑥 + 𝜎𝜎𝑦𝑦

2
0

0 0 0
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Dénomination des contraintes

• 𝜎𝜎𝑖𝑖𝑖𝑖 contrainte normale

• 𝜏𝜏𝑖𝑖𝑖𝑖 contrainte tangentielles (j normale au plan, i direction application charge)

État de contrainte bidimensionnelle pour axes de référence coïncidant avec les axes principaux

i

j

σii

τji

σii

τij

σjj

τij= −τjiτji
σjj

Back
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Il est à remarquer à ce stade que le
cercle de Mohr Γxy est construit grâce
à la rotation d’une section autour de
M0z;
Rien n’empêche d’appliquer la
démarche selon les deux autres
axes. Ainsi, la recherche des
contraintes dans une section oblique
tournant autour de l’axe principal M0x
conduit à un cercle de Mohr Γyz situé
entre les contraintes σy et σz = 0
correspondant aux plans principaux
entre lesquels la section tourne.
De même, une section oblique
tournant autour de M0y conduit au
cercle Γxz compris entre σx et σz = 0.
On peut donc distinguer trois
situations caractéristiques

État de contrainte bidimensionnelle pour axes de référence coïncidant avec les axes principaux

τ

σ
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Contraintes dans une section oblique lorsque σx et σy ne sont pas principales.

• 𝜎𝜎𝜑𝜑 = 𝜎𝜎𝑥𝑥 cos2𝜑𝜑 + 𝜎𝜎𝑦𝑦 sin2𝜑𝜑 + 2𝜏𝜏𝑥𝑥 sin𝜑𝜑 cos𝜑𝜑

• 𝜏𝜏𝜑𝜑 = − 𝜎𝜎𝑥𝑥 − 𝜎𝜎𝑦𝑦 sin𝜑𝜑 cos𝜑𝜑 + 𝜏𝜏𝑥𝑥 cos2𝜑𝜑 − sin2𝜑𝜑

L’insertion de l’angle 2ϕ permet d’expliciter ces relations sous la forme

• 𝜎𝜎𝜑𝜑 = 𝜎𝜎𝑥𝑥+ 𝜎𝜎𝑦𝑦
2

+ 𝜎𝜎𝑥𝑥− 𝜎𝜎𝑦𝑦
2

cos 2𝜑𝜑 + 𝜏𝜏𝑥𝑥 sin 2𝜑𝜑

• 𝜏𝜏𝜑𝜑 = − 𝜎𝜎𝑥𝑥− 𝜎𝜎𝑦𝑦
2

sin 2𝜑𝜑+ 𝜏𝜏𝑥𝑥 co𝑠𝑠 2𝜑𝜑

Qui peut aussi s’écrire

• 𝜎𝜎𝜑𝜑 = 𝜎𝜎𝑥𝑥+ 𝜎𝜎𝑦𝑦
2

+ 𝑅𝑅 cos 2 𝜑𝜑 − 𝜑𝜑0
• 𝜏𝜏𝜑𝜑 = −𝑅𝑅 sin 2 𝜑𝜑 − 𝜑𝜑0

• 𝑅𝑅 = 𝜎𝜎𝑥𝑥− 𝜎𝜎𝑦𝑦
2

2
+ 𝜏𝜏𝑥𝑥2

• tan 2𝜑𝜑0 = 2𝜏𝜏𝑥𝑥
𝜎𝜎𝑥𝑥− 𝜎𝜎𝑦𝑦

État de contrainte pour axes de référence différents des axes principaux
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On retrouve l’équation du cercle fondamental de l’état de contrainte bidimensionnel.
Il est cette fois compris entre les contraintes principales

• 𝜎𝜎1 = 𝜎𝜎𝑥𝑥+ 𝜎𝜎𝑦𝑦
2

+ 𝑅𝑅

• 𝜎𝜎2 = 𝜎𝜎𝑥𝑥+ 𝜎𝜎𝑦𝑦
2

− 𝑅𝑅

Le fait que la contrainte normale est extremum quand la contrainte tangentielle est
nulle est vérifié par les équations précédentes. En effet, la dérivation de la première
équation par rapport à l’angle 2ϕ permet d’écrire

•
𝑑𝑑𝜎𝜎𝜑𝜑
𝑑𝑑 2𝜑𝜑

= 𝜏𝜏𝜑𝜑

État de contrainte pour axes de référence différents des axes principaux
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Une plaque carrée, en acier laminé à chaud, de 50 cm de côté et 2 mm
d’épaisseur, subi sur son contour une charge linéique de p0 = 2 x 105 N/m.

L = 50 cm
 = 2 mm
E = 201 GPa
µ = 0.27

Exemple plaque carrée

p0

p0



L

Calculer : 

1) Les contraintes σx et σy au centre de la plaques et la contrainte de 
cisaillement sur le plan à 45°

2) Les allongements relatif ε et absolu ∆L des côtés
3) La variation relative de volume
4) La densité d’énergie
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Illustrer la réciprocité d’un état de contrainte en traction – compression
(équivalentes) avec un état de contrainte en cisaillement pur (dessiner le cercle
de Mohr)

Exemple plaque carrée en traction - compression
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Une plaque carrée, en acier laminé à chaud, de 50 cm de côté et 2 mm
d’épaisseur, subi sur son contour une charge linéique de p0 = 2 x 105 N/m.

L = 50 cm
 = 2 mm
E = 201 GPa
µ = 0.27

Exemple plaque carrée

p0

p0



L

Calculer : 

1) Les contraintes σx et σy au centre de la plaques et la contrainte de 
cisaillement sur le plan à 45°

2) Les allongements relatif ε et absolu ∆L des côtés
3) La variation relative de volume
4) La densité d’énergie
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Exemple plaque carrée
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Rotation en contrainte plane
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Contraintes principales et cercle de Mohr pour un état de contrainte plane
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Illustrer la réciprocité d’un état de contrainte en traction – compression
(équivalentes) avec un état de contrainte en cisaillement pur (dessiner le cercle
de Mohr)

Exemple plaque carrée en traction - compression
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Exemple plaque carrée en traction - compression
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Simulation

1) Géométrie

2) Matériaux

3) Type analyse linéaire, statique

4) Conditions aux limites

5) Maillage (quadratique)

Exemple plaque carrée en traction - compression

E = 201 GPa
µ = 0.27

e = 2 mm



Chapitre 3 : État de contrainte bidimensionnel

35

Simulation

• Contrainte équivalente de von Mises σvonMises = 173 MPa

• Expression des contraintes:

𝜎𝜎𝑥𝑥 = 𝜎𝜎𝑦𝑦 = 𝑁𝑁
𝐴𝐴

= 𝑃𝑃0𝐿𝐿
𝑙𝑙 𝐿𝐿

= 𝑃𝑃0
𝑙𝑙

= 100 M𝑃𝑃a

• Pourquoi ?

Exemple plaque carrée en traction - compression

y

x

z



Chapitre 3 : État de contrainte bidimensionnel

36

Simulation

• Contraintes principales

Exemple plaque carrée en traction - compression

𝜎𝜎3 = 0 et 𝜏𝜏𝑖𝑖𝑖𝑖 = 0

𝜎𝜎22 = 𝜎𝜎11
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Simulation

• Directions des contraints principales

Exemple plaque carrée en traction - compression
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Simulation

• Contraintes dans un système de coordonnée à 45°

• Le système de coordonnée pour la représentation des contraintes ne correspond
plus aux axes dits «principaux»

Exemple plaque carrée en traction - compression

y

x

z

y x

z
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La figure montre un bloc solide soumis à un état de contraintes pour lequel on
connais les composantes normales et tangentielles. Déterminer, par le calcul et
sur le cercle de Mohr, les valeurs des contraintes principales.

• Nx = 2 x 105 N

• Ny = –3.6 x 104 N

• Tx = 9 x 104 N

• B = 6 cm

• b = 1 cm

• H = 10 cm

Exemple bloc soumis à des charges biaxiales

Nx
Nx

x

y

Ny

Ny

Ty

Ty

B

H

b

Tx Tx
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Exemple bloc soumis à des charges biaxiales
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Exemple bloc soumis à des charges biaxiales
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